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We show unexpected connection of Set Theoretical Forcing with Quantum Mechan-
ical lattice of projections over some separable Hilbert space. The basic ingredient of
the construction is the rule of indistinguishability of Standard and some Nonstandard
models of Peano Arithmetic. The ingeneric reals introduced by M. Ozawa will cor-
respond to simultaneous measurement of incompatible observables. We also discuss
some results concerning model theoretical analysis of Small Exotic Smooth Structures
on topological 4-spaceR4. Forcing appears rather naturally in this context and the rule
of indistinguishability is crucial again. As an unexpected application we are able to ap-
proach Maldacena Conjecture on AdS/CFT correspondence in the case ofAdS5 × S5

and Super YM Conformal Field Theory in four dimensions. We conjecture that there is
possibility of breaking Supersymetry via sources of gravity generated in four dimensions
by exotic smooth structures onR4 emerging in this context.

KEY WORDS: Boolean models of ZFC; quantum mechanics; forcing; exoticR4.

1. REMARKS ON MODEL THEORY AND QM

Since the very beginning of Model Theory (MT), it was realized what is the
position of formal language in the correct description of any mathematical struc-
ture. There is a big difference when we talk about same things using different
formal languages. Many “paradoxical” situations emerged in the development of
the so-called first-order logic (let me mention only L¨owenheim–Skolem Theorem
or Gödel Theorems), which nonetheless serves as the logic depending on very min-
imal theoretical support from Set Theory and the like. It has resulted in emergence
of various spectra of nonisomorphic models, which first-order theories must have
(Keisler and Chang, 1990). One can say that these are merely formal peculiari-
ties, which are not acting upon our everyday practice (espacially as a physicist).
Surprisingly enough, the theories such as Peano Arithmetic (PA), or axiomatized
theory of natural numbers and Zermello–Fraenkel Set Theory (with the Axiom
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of Choice [AC]) ZF(C), or axiomatized theory of sets—both are first-order theo-
ries. This means that all paradoxical situations concern also them. Because of the
fact that very effective formalism of Quantum Mechanics (QM) was developed
very early, people were not considering tools of MT in the context of QM (also,
they simply were not able to do so, because MT was being developed in the time
Quantum Theory was as a young branch of mathematics). In the paradigm of QM
people found it possible to talk about Many Worlds (as in the Everett interpretation
of QM), but no one has tried to incorporate Model Theoretical tools in the shape
of pluralities of models of basic enough theory as ZFC is. In what follows we
are giving some insights coming from MT, which might be helpful in analyzing
certain interpretational and formal aspects of Quantum Theory.

First, in the face of the L¨owenheim–Skolem Theorem (Keisler and Chang,
1990) it follows that ZFC (if it is consistent; Jech, 1978) has a countable model.
In particular, the set of real numbers in this model is countable from the “outside”
(Jech, 1978). Might it be, that discreteness of spectra of some physical Quantum
Mechanical observables is connected to the discreteness of real numbers in some
models of ZFC?

Second, might it be that pluralities and nonisomorphism of models of ZF(C)
(or some other formal theories) can be connected to pluralities of Quantum Me-
chanical worlds in Everettian style?

Third, as follows from Kochen–Specker theorem (Kochen and Specker, 1967)
and EPR kind of experiments, some physical observables cannot have definite
values before measurements. Might this phenomenon be connected to nonexistence
of some real numbers in some models of ZF(C)? Might it be that the real numbers
in question, which are not present in one model, will appear in the other as a result
of Set Theoretical forcing? That would mean that the reals obtained as a result of
measuring of some observables would emerge as a result of being forced to belong
to some enlarged universum of sets. In this situation it would mean that there are
inherent reasons for considering a non-constant universum of sets in the context
of QM.

Whereas we avoid deciding about the import of the first two situations, we are
to explore the third one. In general, detailed proofs are not included here. Informal,
intuitive explanations are often used in place of them. The proofs will be given
elsewhere.

We assume some elementary knowledge of Set Theoretical forcing; the gen-
eral reference is Jech (1978), which also serves as a source for all set theoretical
questions considered here. Some knowledge of Boolean-valued models of ZFC is
also desirable; the general reference is Bell (1985a). In the context of QM, Boolean
Valued models are discussed in Takeuti (1978, 1979, 1983). General references
concerning Topos Theory are Johnstone (1977) and MacLane and Moerdijk (1992).

There were some attempts recently to interpret QM in terms of Topos Theory:
Isham and Butterfield. (1999), Fearins (2002) (by the use of the so-called Smooth
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Toposes from Synthetic Differential Geometry (SDG) (Moerdijket al., 1991)), or
Raptis (2001) in the context of Quantum Gravity. Also, there are some attempts to
approach QM through Model Theoretic tools (Benioff, 2001; Kr´ol, 2001; Takeuti,
1978, 1979). Much effort has been spent on working out connections of QM (and
other branches of physics) with Nonstandard Analysis (Albeverioet al., 1986)
invented by Robinson (1966) as a purely Model Theoretical task (Robinson himself
was one of the creators and main contributors to Model Theory). Close connections
of QM and formal logic were noticed from the very beginning of the subject (von
Neumann and Birghoff, 1936). The so-called Quantum Logic (QL) emerged as
a special one and different from Classical Logic and Intuitionistic Logic (Dalla
Chiara and Givntini, 2001).

SDG was worked out by Kock (1981) and then developed by Moerdijket al.
(1991). The aim of this approach was to build common framework for Toposes and
Nonstandard Analysis in the Robinsonnian style, as well as for differential geome-
try, which deals with infinitesimals called noninvertible or indempotent. Needless
to say, such unification is of great interest to physicists, too. Because of that, there
were some trials to use these techniques in the context of Quantum and Classical
Gravity (Guts and Zvyagitser, 1999, 2001) or in QM (Fearins, 2002). Very nice
features of Toposes, which are inducing Intuitionistic Logic and are natural mod-
els for arbitraily high order logic, cause people to naturally start to think about
using the strangeness of the world generated by Toposes (the Middle Third Law
can be violated in Toposes, Standard Natural Numbers may not be a decidable
object, there may not exist an object of naturals at all, and Set Theory is gener-
ated in the inside of the Topos; Toposes might serve as Universes of Discourse
for Mathematics, and so on, MacLane and Moerdijk, 1992) to the strangeness (at
the interpretational level) of the Quantum World. However, one should be aware
that

Warning. No Topos is able to interprete QM in the sense that the Logic generated
by the Topos is the one generated by Quantum Mechanical phenomena.

Proof: Logical structure of any Topos is based on Heyting Algebras (HA). Any
HA is distributive one. Quantum logic is based on the Lattice of projections (Bell,
1985b) in some separable Hilbert space. Such a Lattice is in general nondistributive
(Sikorskiet al., 1963; Takeuti, 1978) (the lattice of projections is distributive only
in the case of one-dimensional Hilbert space). ¤

2. FORCING, SET THEORY, AND QM

Forcing was discovered originally as a tool for proving some independence
results in Set Theory from the axioms of ZF(C) (Cohen, 1963) and then, developed
as a very basic phenomenon in many different mathematical situations. Solovay and



P1: GXB

International Journal of Theoretical Physics [ijtp] pp903-ijtp-468225 August 19, 2003 20:30 Style file version May 30th, 2002

924 Kr ól

Scott (1969) and, independently, Vopenka (1965) have given formulation of forcing
in the language of the so-called Boolean-valued universes of ZF(C). Forcing as it
stands has been shown to have specific significance in very general situations in the
Model Theory (Robinson and Barwise, 1971). Semantics connected to Toposes
(at least to Grothendieck Toposes) in a natural way is also modeled on forcing
semantics (sheaf semantics) (Johnstone, 1977). The variety of ways the situation
of forcing appears in many different levels of mathematical reasoning (proof theory,
logic, topos semantic, model theory) causes it to seem to be really fundamental
phenomenon.

Forcing, despite its formal shape, has very specific action over universes of
Set Theory (ZF(C)): it defines the relations between names of things, which are
not present in the Universe (it means they are not sets in this sense) such that
the relations hold between sets (whose names were considered) in the enlarged
Universe. The procedure of enlargement with the preservation of theorems of
ZF(C) is just the forcing procedure. From the other perspective forcing is the recipe
for proving theorems valid in enlarged Universe (which is a Model of ZF(C)) and
not necessarily valid in the ground Universe (which is also a Model of ZF(C)). In
that way Cohen was able to prove independence of Continuum Hypothesis (CH)
and the Axiom of Choice (AC) from the axioms of ZF.

Bell (1983) considered the situation of forcing in some approach to Quantum
Logic. He was able to point out the place in Quantum Logic, where forcing,
understood logically, fails to work. There are some indications coming from his
analysis that

(i) Set theoretical context is probably changing.
(ii) There are some “preformal” situations where nonstandard model of reals

(in the Robinsonnian sense) i.e.∗R and standard one –R, are “identified”
(or, in fact,N and∗N as models of Peano Arithmetic (PA) are identified).

In what follows we are to investigate both points. Strikingly enough, this
will lead us to rebirth of forcing in the context of QM and, in fact, forcing ap-
pears to be very intrinsic shape of Quantum Mechanical paradigm; instead of
being only formal construction in logic, or QL, it is to be considered as a tool
allowing the change of Metatheoretical Universe and/or the way reals appear as
possible results of experiments. In fact, both points (i) and (ii) intertwine in the
specific way, which is well modeled locally by the model-theoretical construc-
tions of Bounded Boolean Ultrasheaf of Superstructure modulo some Ultrafil-
ter (bBU SuS/U ) in Boolean Algebra (BA) (invented by Ozawa, 1994)) (see
Theorem 3).

In this paper we show surprising correlation of formalism of QM with some
structures which are modelled on forcing constructions in various of its facets. This
is still more surprising, because it was shown by Bell (1985a,b) that the forcing
formally does not work any more in QL (what we have mentioned already). The
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missing link for appearing forcing in QM formalism could be nonclassicalMain
Hypo.

3. THE RULE OF INDISTINGUISHABILITY STANDARD AND SOME
NONSTANDARD MODELS OF PEANO ARITHMETIC

The rule is exactly as stated in the title, but it requires some explanation.
First, the Rule cannot be formalized; otherwise it would exist formal context
where one could express: Standard and Nonstandard models of PA are different
and (according to the Rule) one cannot express their difference—this is impos-
sible. For, there does exist suitably higher-order formal language (in fact sec-
ond order is enough), which expresses the difference between StandardN and
NonstandardN; there would also exist an order, and the language of that or-
der, which would express identity of both models. It is enough to take the lan-
guage of order being maximal of both orders (with appropriate symbols), to obtain
contradiction.

Second, the Rule is the heuristic statement only; one cannot prove it (this
would require some formal context). In what follows, we give some possible
formulations of the Rule.

In some formal constructions (not necessarily connected with Nonstandard Natu-
rals) the appearance of Nonstandard Naturals is unavoidable and out of control
by formal means of the construction.

Along with the shift of the language L from the higher order into first order, we
cannot distinguish Standard N from Nonstandard N. There are such shifts which
are not able to be described simultaneously in any formal language, which
would be an extension of the language L.

For any given formal language (of any order) there exists a pair (N, ∗N) such
that there does not exist any formula(φ(Ex) (with free variables fromEx) in this
language, which would be expressing any difference betweenN and∗N.

An analogy with Manifolds can be useful here: we have patches which are
StandardN or NonstandardN, but the transition functions between them cannot
be formalized simultaneously with pathes (the language logic is also to be shifted).
Such a thing we callLevelfold.

As we will see, such a strange Rule, called from now onMain Hypo, has
much to do with formalism of QM.

There does not exist any formal language which would be able both to describe
language of PA (counting formulas of it) and to describe all models of PA (there
are some models of PA which cannot be discribed simultaneously with the formal
language of PA).

In general one can say that non simultaneous (in principle) description of
formal language and the models of the theory in this language (which in fact is a core



P1: GXB

International Journal of Theoretical Physics [ijtp] pp903-ijtp-468225 August 19, 2003 20:30 Style file version May 30th, 2002

926 Kr ól

of Main Hypo) is analoguos to nonsimultaneous (also in principle) measurability
of some physical observables. We will see what exactly is the formal content of
this coincidence.

4. FORCING CONSTRUCTIONS

We are ready to formulate some strange consequences of the Main Hypo.
There is canonical bijection between morphisms of ultrafilters onω and elemen-
tary embeddings of ultrapowers ofN. Morphisms of ultrafilters induce the order,
which is just Rudin–Keisler (RK) order. E-morphism (End extension morphism)
is induced by being an initial segment of one ultrapower ofN in another. E-
morphism also induces E-order on ultrafilters onω. This is stronger preorder than
RK. (Another possible order is the order connected to conservative extensions of
ultraproducts; it is stronger than E-order. The strongest one is Rudin–Frolik order
depicted asv (Blass, 1977). Murakami (1999) was able to define RK order and RF
order on ultrafilters in arbitrarily complete BA.) What follows fromRudin–Keisler
order of ultrafilters overP(ω), taking notRudin–Keisler-related ultrafilters, we are
led notto end extensionsof Nonstandard Naturals. Such an extension is to modify
some initial segment of naturals (Nonstandard): [0, 1, 2,. . . n̄] ⊂ ∗N in the sense
that there is no 1–1 mappingφ:

φ : [0, 1, . . . n̄]
1:1
6→
into

[0′, 1′, 2′, . . . , n̄′]

such thatφ(n) = n′. They both are end extensions of Standard Naturals: they have
order-typeω + (ω + ω∗) ∗ η, whereη is dense order without endpoints andω∗ is
reverse order ofω (Kamo, 1981).

Lemma 1. Under hypothesis of nondistinguishing of Standard N and some Non-
standard N (Main Hypo) it would be possible to have not end extensions of Standard
Natural Numbers.

Remark: Because all extensions of PA are end extensions of initial segments of
Standard Naturals (Blass, 1977) (although they could be not conservative exten-
sions), it is clear that the above construction cannot be fully classical (see discussion
in Section 3).

Lemma 2. Under Main Hypo, one can have not end extension of Standard Nat-
urals where some k∈ N is modified into some infinite nonstandard natural from
∗N − N.

Next, consider lattice of projectionsL (self-adjoint and indempotent oper-
ators) over some separable Hilbert spaceH. Let (Bα) be some maximal BA of
projections fromL.
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Lemma 3. (Bα) is complete atomic Boolean Algebra.

Corollary 1. Maximal algebra of projections in the lattice of projections over
separable Hilbert space cannot serve as a Forcing algebra for any nontrivial forc-
ing over any Ground Model of ZF(C).

This is a well-known fact that forcing is not trivial (properly extends the
ground model) iff BA, which corresponds to it, is atomless BA (Jech, 1978).

Let us notice that atomic, complete BAs fulfill infinite distributive law (DL):∏
i∈I

∑
j∈J

p(i , j ) =
∑
f ∈J I

∏
i∈I

p(i , f (i ))

whereI , J are arbitrarily, possibly infinite, sets of indices, and{p(i , j )}i∈I , j∈J is
any double-indexed family of elements of BA.

Any nondistributive elementsA, B, C from the latticeL (in the sense, that
their spectral families are inL):

(∗∗)A∧ (B ∨ C) 6= A∧ B ∨ A∧ C.

cannot be simultaneously in any (Bα). For, if not, let us consider spectral decom-
positions ofA, B, C from (∗∗), it follows that some triples of projections from the
decompositions would also fulfill (∗∗). That means they cannot be simultaneously
in any (Bα).

Theorem 1. (1) Under Main Hypo, there is natural correspondence between lat-
tice of projectionsL and some family of not (ω, ω) distributive complete Boolean
Algebras. (2) Any such Boolean Algebra can be Cohen forcing BA which adds
some Cohen generic reals into some Ground modelV of ZFC. (3) Under Main
Hypo this real interpreted in Boolean-valued model of ZFC -V B̄ corresponds to
the self-adjoint operator which is not in (Bα).

Theorem 2. Cohen generic reals from Theorem 1 are able to be interpreted
as a probability distributions over spectrum of Boolean Algebra of Projections
(Bα) in the separable Hilbert spaceH. The reals might be obtained in the ex-
periments of measuring an observable, corresponding to the self-adjoint operator
from Theorem 1.3.

Remark. The peculiarity of Theorem 2 is in that even in the single measure-
ment having got single “real” as a result, we already have corresponding probability
distribution coming from the results of repeating measurements (to be performed).
The dynamics of shifts of ZFC Models is giving this situation, which in turn en-
ables one to “realize”Main Hypo.

Now we are ready to analyze what meaning can be given to reals obtained
in measuringA or B (self-adjoint operators). The related question is: What is the
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spectrum ofCω, having fixed the spectrum of (Bα) Both should be composed of
real numbers, but once we are fixing the meaning of reals corresponding to (Bα),
then what are the reals corresponding toCω (interprated, by the virtue ofMain
Hypo, in terms of projections fromL)? Finally, what does it mean that one cannot
measure noncommutingA andB simultaneously?

Let us notice that realsR(Bα ) in V(Bα ) and R((Bα )+(As)) = RCω in VCω differ
because of Cohen generic reals on the level of ground modelV. This means that we
have to change the ground model along with the shift (Bα)→ ((Bα)+ (As)), where
both algebras are treated as algebras of projections fromL. That means, in turn,
that to maintain indistinguishability of algebras, we have changed the meaning of
the Lattice of Projections. Thus we have reached the point where everything has
changed the meaning (even standard Natural Numbers fromMain Hypo).

To try to see the difference between varying Naturals or Reals, we are trying
to fix N andR and going to employ the technique of Bounded Boolean Ultrasheaf
of Superstructure Modulo, some Ultrafilter in BA (bBUSuS/U) (Ozawa, 1994).
bBU SuS/Uis in fact based on generalization of Ultraproduct modulo Ultrafilter in
P(ω) (Keisler and Chang, 1990) into Boolean Ultraproduct modulo Ultrafilter in
BA in question (Mansfield, 1971). The next step is to construct Superstructure to
generate nonstandard elements inside Boolean Valued Universum of ZFC, and to
make forcing, and to generate infinitesimals simultaneously by the same Ultrafilter
in BA (Ozawa, 1994).

On the basis of fixedR, we will be able to see what reals should look like
in the presence of noncompatible observables. Let us consider some superstruc-
ture allowing one to deal withN,∗ N, R, and ∗R according to some Ultrafilter
on P(ω), i.e., V(R ∪ P(ω)). On the side of “true” (connected to StandardN be-
ing well-distinguished to any NonstandardN) Lattice of Projections, maximal
BA of projections inL is isomorphic toP(ω) (Lemma 3). Following the argu-
ments in Ozawa (1994), we can define superstructure in Boolean-valued model
VP(ω) ' V(Bα ) (being superstructure is expressible by10− formulas). This means
that our superstructure generates∗N and∗R, which are equally generated inside
V(Bα ).

By the shift (Bα)→ ((Bα)+ (As)) ' Cω (coming fromMain Hypo), we are
faced with Boolean-valued modelVCω and ingeneric reals are appearing with
respect to the superstructureV(R∪ Cω) (Ozawa, 1994). Now, there is nonequiva-
lence between∗N, ∗R generated in the outside and inside of theVCω . More exactly,
an effect of forcing corresponds insideVCω to ingeneric reals with respect to fixed
R. That means,Main Hypothrough the shiftVP(ω) ' V(Bα ) → VCω is giving in-
generic reals as those which correspond to enlargement (Bα)→ ((Bα)+ (As)), so
ingeneric reals correspond toA (A determines generic Cohen real, which corre-
sponds to some ultrafilterU in Cω .Cω andU , in turn, give ingeneric reals, Ozawa,
1994). Let us remind that by a spectrum of Boolean Algebra of projections we
mean the spectrum ofC∗-algebra, which is uniquelly determined by the algebra
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of projections (Jech, 1984). Now we see that fixing the meaning of trueR as con-
nected to the spectrum of (Bα) we can regard reals connected to the shifted algebra
((Bα)+ (As)) as ingeneric enlargement coming frombBUSuS/Uwith respect to
Cω and ultrafilters in it. We have obtained the characterization of the spectrum of
enlarged algebra coming from noncompatible observables (throughMain Hypo).

Theorem 3. In the measurement of noncompatible observables as a result of
the possible simultaneous measurement we would have real number and some
ingeneric real corresponding to Bounded Boolean Ultrasheaf of Superstructure
modulo some Ultrafilter in BA—bBUSuS/U. That is why having both reals is not
possible.

Theorem 4. According to the shift(Bα)→ ((Bα)+ A) we have the shift, cor-
responding to the forcing in the ground model:V → V[r A], where rA is Cohen
generic real corresponding to A.

Proof: V ' V(Bα )/U → V((Bα )+A)/Ū ' VCω/Ū ' V[τa]. ¤

Remark: In Theorem 4 we cannot have both real numbers as a result of
measuring noncompatible observables, otherwise they would be compatible, and
an enlarged algebra ((Bα)+ (Aα)) ' Cω does not appear. We have only algebra
(Bα) and consequently standard reals as a result of measuring observables from
this algebra.

In that way we have obtained the model of being noncompatible observables
via forcing construction, in the sense that we are able to show what spectrum could
correspond to the “algebra” generated by noncompatible observables. Let us note
that our forcing involved in the construction is one which changes the meaning of
the Boolean-valued universe as inbBUSuS/U.

Corollary 2. Under Main Hypo the spectrum of the Boolean Algebra (Bα) is
shifted to the spectrum of enlarged Boolean Algebra((Bα)+ (As)) by adjoining
some ingeneric reals.

Now we are interested in the characterization of the meaning of standardness
of real numbers (and standardness of related set theoretical entities) appearing
in measurement of various observables; what are our formal abilities to decide
whether we can maintain the notion of standard real over all class of observables?
The above construction allowed us to “see” Nonstandard reals or Ingeneric reals
just by referring to well-defined notion of Standard Natural or Standard Real. Is it
possible to maintain it for all observables and measurements?

It can be shown that this is not the case; the modification of Standard Naturals
and reals has to be taken seriously in the context of QM. This means we cannot
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decide once and for ever about the standardness of sets to “see” (with the bounded
Boolean ultrasheaf constructions) the shifts Standard Reals→ Ingeneric Reals;
this is possible only locally.

To close this chapter, let us make a note about some possibilities to con-
sider “Spectral Theorem” associated to the “Boolean algebra,” that come from
noncompatible observables, as in Theorem 2. First, there is well-developed the-
ory of measure on the internal nonstandard spaces (Loeb, 1982), the so-called
Loeb measure. Second, Ozawa (1994) has extended this measure over ingeneric
measure spaces. We can try to characterize “C∗-algebra” coming from the above
“Boolean Algebra” generated by noncommuting observables, as the one, which
in some sense is isomorphic to the “function algebra” over ingeneric spectrum.
In this way, noncommutativity is eaten by ourMain Hypoand the commutative
function algebra emerges again.

5. MODEL THEORETIC ANALYSIS OF SMALL EXOTIC
SMOOTH STRUCTURES ON R4

General references on exotic smoothness topics and Kirby calculus are Gompf
and Stipsicz (1999) or Kirby (1989). There were also attempts to relate exotic
smoothness to some physical valid situations (Brans, 1994; SlÃadkowski, 2001). Let
us consider the so-called small exotic smoothR4. Small exotic smoothR4’s are all
imbedded into StandardR4. They come from the failure of smooth h-cobordism
theorem in dimension 4 (large exotic smooth structures onR4 come from the
failure of higher dimensional surgery theory applied to dimension 4). There are
continuum many different nondiffeomorphic smooth structures (small as well as
large) on topologicalR4. Any large smoothR4 contains compact manifold which
cannot be smoothly imbedded into standardR4. It is known that small exotic
smoothR4, as being four-manifolds, have handle decompositions (infinite) with
only 0-, 1- and 2-handles included. Typical handlebody of such manifold is given
by a compact submanifold ofR4 (so-called Akbulut cork) with some Casson
handles (CH) attached. CH are infinite towers of kinky handles and any Casson
handle is homeomorphic to the standard 2-handle (Freedman, 1982). The simplest
exotic (small) R4 is represented by the following Kirby diagram (Bi˘zaca and
Gompf, 1996) (Fig. 1), where it is understood that we are taking only interior
of the handlebody ignoring the boundary (except the attaching circle of the CH).
Different exotic smallR4’s differ among themselves just by the complexity of CH
and by compactK .

The motivation to consider small exoticR4 is in that they might be represented
(in principle) by the explicit figures with their Kirby diagrams. The idea to use
Model Theory to analyze exotic structures onR4 is in our ability to introduce
specific partial order in the set of pairs (K , C H(n)

i ) of compactsK and finite stages
of Casson Handles (attached toK to obtain exotic smoothR4). The partial order
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Fig. 1. Casson Handle in the simplest exoticR4.

in question is to be separative one. Then we can produce Boolean Algebra of
regular open (RO) subsets of the above partial orderP. So, we haveRO(P) (Jech,
1978). It is known that this algebra is complete atomless BA (Jech, 1978). Taking
Ground ModelV (as usual this is to be Countable Transitive Model of ZFC to
allow forcing), we can create Boolean-valued model of ZFC -VRO(P). On the
basis of this, we are able to retrieve two valued models just by taking quotients by
nonprincipal ultrafilters inRO(P). On the level of Ground Model this is just the
same as adding some Cohen generic realr : V → V [r ].

Now we can formulate

Theorem 5. Forcing which adds generic Cohen real r to V corresponds exactly
to attaching some Casson Handle to K, corresponding in turn to the change of the
smooth differential structure onR4.

Next, we are ready to describe how the Main Hypo is going to generate
Smooth Exotic Structures onR4.

Lemma 4. Under Main Hypo one can have indistinguishability of some Standard

R4 and some Nonstandard∗R4: R4 '∼ ∗R4.

Lemma 5. Dirac δ-function (distribution) onR4 is smooth ordinary function
(with values in∗R) or ∗R4.

Proof: see Robinson (1979). ¤

Now, let us observe that havingR4 '∼ ∗R4 we do not distinguish formally
between smooth functions on∗R4 and smooth functions onR4. This means we
should have some smooth function onR4 which corresponds (not in a direct way)
to δ-function onR4. The change in the smoothness which guarantees the change
δ-function−→ smooth function, is of course the same as the changing standard
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smoothness into some other one (nondiffeomorphic). This is Non Standard Exotic
Smooth Structure.

We have reached the point where Model Theoretical analysis of exotic smooth
structures onR4 shows connections to Set Theoretical forcing andMain Hypo. Is
it accidental, or does it express any essential correlations between Exotic Smooth
R4 and Model Theoretical shape of QM (which we have exhibited in the first part)?
We claim that the former is true, but detailed analysis will appear elsewhere.

In what follows we only give an example concerning this situation in the
context of the so-called AdS/CFT correspondence inSustringor M–theory.

6. MODEL THEORETIC ANALYSIS OF THE ADS/CFT
CORRESPONDENCE—AN EXAMPLE

Since Maldacena (1997) made the conjecture about strict mathematical equiv-
alence (duality) of completely different theories: Superstring Theory onAdS5×
S5 background and Supersymmetric Conformal SU(N) Yang Mills Theory in
fourdimensions in the limit of largeN, much work has been done to check it.
There were also some proposals (Witten and Klebanov, 1999) to make connec-
tion of this duality to “realistic” nonsupersymmetric, nonconformal YM theory in
4-dim (QCD?).

On the basis of some Model Theoretic analysis of the solutions of 10-dim
Supergravity equations, we present possible mechanism to generate the sources of
masses terms in 4-dim Super YM CFT which might (in principle) break SuSy.

The crucial ingredient of AdS/sCFT correspondence is to takeN D3-branes
as a solution of classical SuGry equations in 10 dimensions (which is low-energy
limit of IIB SuString Theory and D3-branes are also present here). TakingN to
infinity and consideringN D3-branes as coincident, it is possible to recover the
near horizon geometry of stack of D3-branes so obtained. This geometry is just
AdS5× S5. Witten (1998) has shown how the correlation functions in the bulk
SuString Theory correspond to the ones in SYM CFT on the 4-dim boundary of
AdS5. He has also shown what is the shape of the sources in boundary theory
(coming from the bulk) and to what boundary operators they couple. We do not
present calculations here, we just state main ideas about how one might generate
sources of gravity which would break SuSy in the bulk YM theory.

Let us consider the stack ofN D3-branes as a multiplicity ofN 4-dim world
volumes which is (topologically) a multiplicity ofR4. Let us note that every D3-
brane is the solution of 10-dim SuGry. This can be seen as a kind of model of the
theory given by 10-dim SuGry equations. We are going to produce another model
(Nonstandard) using technique of Ultroproduct (modulo some ultrafilter inP(ω)).
We do not discuss here the subtleties concerning orders of the formal languages
involved. In such a way we will generate Nonstandard solution to 10-dim SuGry
whose world volume is just (R4)N→∞/U which is∗R4. Now we are able to state
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Theorem 6. Under Main Hypo the procedure described above gives sources
of gravity in 4-dim.

The proof of this theorem is based on the analysis in the previous paragraph,
where the shiftδ-function−→ smooth function onR4, corresponded to the change
of differential structure onR4, and we know from the work of Asselmeyer (1997),
how the change of smooth differential structure on compact four-Manifold gener-
ates sources of 4-dim Gravity. The possibility of breaking SuSy by these sources
comes from analysis of Polchinski and Strassler (2000). The details are to be
presented elsewhere.

7. SUMMARY

We have presented, in a sketchy way, the ideology of analyzing QM via
Model Theory based onMain Hypo. Even more sketchily we have noticed about
similar analysis of the exotic (small) smooth structures onR4. There are striking
similarities to both approaches: they requireMain Hypoand a set theoretical forcing
appears unexpectedly, yet rather naturally.Main Hypoand forcing are able to code
formally the structure of QM in the language of operator algebras over separable
Hilbert space. This coding can be used to explain certain aspect of Maldacena
conjecture that quantum field theory without gravity is to be dual to the theory
describing gravity.

There are also some possibilities to break SuSy or conformal invariance in
4-dim YM Theory in order to obtain connections to realistic (confined) 4-dim
QCD.
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